mirror of
https://github.com/CaiJimmy/hugo-theme-stack.git
synced 2025-04-29 03:53:30 +08:00
509 lines
11 KiB
Markdown
509 lines
11 KiB
Markdown
+++
|
||
author = "Wxn"
|
||
title = "给个offer"
|
||
date = "2024-04-24"
|
||
description = "Please read me first."
|
||
tags = [
|
||
"Dilay",
|
||
]
|
||
categories = [
|
||
"面试复盘",
|
||
]
|
||
|
||
+++
|
||
|
||
This article offers a sample of basic Markdown.
|
||
<!--more-->
|
||
|
||
# 正文开始
|
||
|
||
# 1.41. 包含min函数的栈
|
||
|
||
```cpp
|
||
//https://leetcode.cn/problems/bao-han-minhan-shu-de-zhan-lcof/description/
|
||
class MinStack {
|
||
public:
|
||
/** initialize your data structure here. */
|
||
//1.单调栈
|
||
//2.主栈与辅助栈
|
||
//3.1)push都要插入(如果辅助栈为空,或者辅助栈顶>=x,则辅助栈插入)
|
||
//2)pop() 如果辅助栈顶 == 主栈顶,则辅助栈顶弹出,否者就只有主栈弹出
|
||
//3)4)直接返回相应的栈
|
||
MinStack() {
|
||
|
||
}
|
||
|
||
void push(int x) {
|
||
|
||
}
|
||
|
||
void pop() {
|
||
|
||
}
|
||
|
||
int top() {
|
||
|
||
}
|
||
|
||
int getMin() {
|
||
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Your MinStack object will be instantiated and called as such:
|
||
* MinStack obj = new MinStack();
|
||
* obj.push(x);
|
||
* obj.pop();
|
||
* int param_3 = obj.top();
|
||
* int param_4 = obj.getMin();
|
||
*/
|
||
```
|
||
|
||
|
||
|
||
|
||
|
||
# 2.35. 反转链表
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for singly-linked list.
|
||
* struct ListNode {
|
||
* int val;
|
||
* ListNode *next;
|
||
* ListNode(int x) : val(x), next(NULL) {}
|
||
* };
|
||
*/
|
||
//https://leetcode.cn/problems/reverse-linked-list/
|
||
//难点:单链表要建立一个前驱节点
|
||
//关键点:画图
|
||
class Solution {
|
||
public:
|
||
ListNode* reverseList(ListNode* head) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||

|
||
|
||
# 3.19. 二叉树的下一个节点
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* struct TreeNode {
|
||
* int val;
|
||
* TreeNode *left;
|
||
* TreeNode *right;
|
||
* TreeNode *father;
|
||
* TreeNode(int x) : val(x), left(NULL), right(NULL), father(NULL) {}
|
||
* };
|
||
*/
|
||
//这个是vip题目
|
||
//285. 二叉搜索树中的中序后继
|
||
//分类讨论:有右子树和没有右子树
|
||
//中序遍历
|
||
//情况1:这个点有右子树,那后继就是"右子树"最左边的那个
|
||
//情况2:这个点的右子树为空(且有父节点),当p有父节点且p等于p父节点的右儿子,那么p就赋值为p的父节点,最后返回p的父节点
|
||
class Solution {
|
||
public:
|
||
TreeNode* inorderSuccessor(TreeNode* p) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 4.34. 链表中环的入口结点
|
||
|
||
[142. 环形链表 II](https://leetcode.cn/problems/linked-list-cycle-ii/)
|
||
|
||
[LCR 022. 环形链表 II](https://leetcode.cn/problems/c32eOV/)
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for singly-linked list.
|
||
* struct ListNode {
|
||
* int val;
|
||
* ListNode *next;
|
||
* ListNode(int x) : val(x), next(NULL) {}
|
||
* };
|
||
*/
|
||
class Solution {
|
||
public:
|
||
ListNode *entryNodeOfLoop(ListNode *head) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
画图:数学证明:(b+c)表示n圈
|
||
|
||

|
||
|
||
```cpp
|
||
备份
|
||
class Solution {
|
||
public:
|
||
ListNode *entryNodeOfLoop(ListNode *head) {
|
||
auto first = head,slow = head;
|
||
while(first && first->next && first->next->next)
|
||
{
|
||
first = first->next->next;
|
||
slow = slow->next;
|
||
if(first == slow)
|
||
{
|
||
first = head;
|
||
while(first != slow)
|
||
{
|
||
first = first->next;
|
||
slow = slow->next;
|
||
}
|
||
return first;
|
||
}
|
||
}
|
||
return nullptr;
|
||
}
|
||
};
|
||
```
|
||
|
||
|
||
|
||
# 5.77.翻转单词顺序
|
||
|
||
[151. 反转字符串中的单词](https://leetcode.cn/problems/reverse-words-in-a-string/)
|
||
|
||
```cpp
|
||
//先翻转整个句子
|
||
//再翻转单独的一个单词
|
||
//难点:在找到一段时,不要忘记边界
|
||
```
|
||
|
||

|
||
|
||
```cpp
|
||
void Reverse(int l ,int r,string& s)
|
||
{
|
||
for(int i = l , j = r ;i < j ;i++,j--)swap(s[i],s[j]);
|
||
}
|
||
Reverse(0,s.size()-1,s);
|
||
等价于
|
||
reverse(s.begin()+0,s.begin()+s.size());//范围:[)
|
||
|
||
反转不是空格的那一段
|
||
```
|
||
|
||
|
||
|
||
# 6.18.重建二叉树
|
||
|
||
https://leetcode.cn/problems/zhong-jian-er-cha-shu-lcof/description/
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* struct TreeNode {
|
||
* int val;
|
||
* TreeNode *left;
|
||
* TreeNode *right;
|
||
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
|
||
* };
|
||
*/
|
||
//前:根左右
|
||
//中:左根右
|
||
//1.使用哈希表,快速的找到"一个元素在中序遍历的位置"
|
||
//2.递归dfs(主函数直接返回)
|
||
//1)递归参数:左右子树节点个数
|
||
//2)递归内部:
|
||
/*
|
||
- 前序遍历:左>右 -> null
|
||
- 根节点的值为前序遍历的第1个点 preorder[a]
|
||
- 找到根节点在哈希表中的位置
|
||
- 左右子树递归创建 范围画图
|
||
*/
|
||
class Solution {
|
||
public:
|
||
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||

|
||
|
||
|
||
|
||

|
||
|
||
|
||
|
||
|
||
|
||
# 7.21. 斐波那契数列
|
||
|
||
```cpp
|
||
//f[i] = f[i-1]+f[i-2]
|
||
class Solution {
|
||
public:
|
||
int Fibonacci(int n) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 8.78. 左旋转字符串
|
||
|
||
```cpp
|
||
//先把整个进行翻转
|
||
//再把前(总-个数),后两部分进行翻转
|
||
class Solution {
|
||
public:
|
||
string leftRotateString(string str, int n) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 9.87. 把字符串转换成整数
|
||
|
||
```cpp
|
||
//分步
|
||
//过滤掉行首空格
|
||
//long long
|
||
//判断这个数是不是负数
|
||
//如果在累加的过程中(还没加完),就已经越界了,那就直接跳出来
|
||
class Solution {
|
||
public:
|
||
int strToInt(string str) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 10.28. 在O(1)时间删除链表结点
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for singly-linked list.
|
||
* struct ListNode {
|
||
* int val;
|
||
* ListNode *next;
|
||
* ListNode(int x) : val(x), next(NULL) {}
|
||
* };
|
||
*/
|
||
//1.用下一个节点覆盖掉当前节点
|
||
//2.删除掉当前节点
|
||
class Solution {
|
||
public:
|
||
void deleteNode(ListNode* node) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 11.66. 两个链表的第一个公共结点
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for singly-linked list.
|
||
* struct ListNode {
|
||
* int val;
|
||
* ListNode *next;
|
||
* ListNode(int x) : val(x), next(NULL) {}
|
||
* };
|
||
*/
|
||
//双指针,
|
||
//指针1走完a再走b,指针2走完b再走a,返回最后相遇的位置,如果最后都指向空也算相遇了
|
||
//注意:对于指针1与指针2,要么是"回头",要么是"下一个"
|
||
class Solution {
|
||
public:
|
||
ListNode *findFirstCommonNode(ListNode *headA, ListNode *headB) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
|
||
|
||
|
||
|
||

|
||
|
||
|
||
|
||
# 12.84. 求1+2+…+n
|
||
|
||
```cpp
|
||
//语法题:(false && 条件); = false 可以起到if的效果
|
||
class Solution {
|
||
public:
|
||
int getSum(int n) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 13.36. 合并两个排序的链表
|
||
|
||
```cpp
|
||
/**
|
||
* Definition for singly-linked list.
|
||
* struct ListNode {
|
||
* int val;
|
||
* ListNode *next;
|
||
* ListNode(int x) : val(x), next(NULL) {}
|
||
* };
|
||
*/
|
||
//归并排序
|
||
//虚拟节点(比如说初始化为-1)+当前节点
|
||
//1)两个指针
|
||
//2)比较两个指针的值哪个小,哪个小就给哪个(如果l1)
|
||
//3)链到虚拟链表,当前节点后移,l1也后移
|
||
//4)处理残局:l1与l2哪个不同,就一直链到空为止
|
||
class Solution {
|
||
public:
|
||
ListNode* merge(ListNode* l1, ListNode* l2) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 14.14. 不修改数组找出重复的数字
|
||
|
||
```cpp
|
||
//简单方法:哈希表
|
||
//方二:抽屉原理
|
||
//二分法:
|
||
//一个萝卜一个坑,假如说数的个数>坑的个数,那么这个区间一定存在重复的数
|
||
//注意:给定一个长度为 n+1的数组nums,数组中所有的数均在 1∼n的范围内,其中 n≥1,表示下标有效的范围是[1,nums.size()-1]
|
||
class Solution {
|
||
public:
|
||
int duplicateInArray(vector<int>& nums) {
|
||
// l 和 r 分别代表的是 数字 1 和 数字n 这里并不是下标.
|
||
int l = 1, r = nums.size() - 1;
|
||
while (l < r){
|
||
// 二分 找到中间的那个数
|
||
int mid = l + r >> 1;
|
||
int s = 0;
|
||
// 下面这句话的意思 从 nums里面 循环去先去 判断 这个数 x 的值看他是否在 [l, mid]中间, 在的话 判断条件执行完为true
|
||
// true 的话代表 数字 1 flase 代表 数字 0. 然后再进行累加 s += x 统计符合条件的个数.
|
||
// 最终的效果就是 统计了 整个数组中 数的值 在 [l,mid] 之间的个数.
|
||
for (auto x : nums) s += x >= l && x <= mid; // left : [l, mid] , right : [mid + 1, r]
|
||
// 理解: 一个坑存一个数, 正常情况下 一定是坑的个数 和 数的个数相等. 如果一坑里面有两个数. 那么就会出现
|
||
// 数的个数 大于 坑的个数 说明 这个区间段一定存在重复的个数.
|
||
if (s > mid - l + 1) r = mid;
|
||
else l = mid + 1;
|
||
}
|
||
|
||
return r;//l和r都可以
|
||
}
|
||
};
|
||
```
|
||
|
||
# 15.68. 0到n-1中缺失的数字
|
||
|
||
```cpp
|
||
//二分
|
||
//通过下标直接查找,
|
||
//因为是连续的,如果不少的话,则有nums[mid] == mid,如果是左边少了,就是不等
|
||
//最后还要判断nums[r] == r,要是等于的话,那就是少最后一个
|
||
class Solution {
|
||
public:
|
||
int getMissingNumber(vector<int>& nums) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 16.75. 和为S的两个数字
|
||
|
||
```cpp
|
||
//时间复杂度最重要
|
||
//用法哈希表,count看是否存在
|
||
class Solution {
|
||
public:
|
||
vector<int> findNumbersWithSum(vector<int>& nums, int target) {
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
# 17.23. 矩阵中的路径
|
||
|
||
```cpp
|
||
//dfs
|
||
//枚举起点,枚举方向
|
||
//起点怎么枚举:两个for循环
|
||
//方向怎么枚举?上右下左:画图
|
||
|
||
//dfs中:
|
||
//1)刚好遍历到的字符个数u == 字符串的长度,就OK
|
||
//2)如果u下标字符 != 遍历到的字符,就不ok
|
||
//3)遍历四个方向,为了避免回头遍历,比如你刚遍历完一个字符'a',下一个字符还是'a',就会回头遍历,
|
||
//我们要避免这个,就需要先修改为一个其他的,等遍历完再返还
|
||
class Solution {
|
||
public:
|
||
bool dfs(vector<vector<char>>& matrix, string &str,int u ,int x,int y)
|
||
{
|
||
if(str[u] != matrix[x][y])return false;//当前字符与之不符
|
||
if(u == str.size()-1)return true;//刚好是最后一个,而且能来到这,说明相符
|
||
int dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};
|
||
char t = matrix[x][y];
|
||
matrix[x][y] = '*';
|
||
for(int i = 0 ; i < 4 ;i++)
|
||
{
|
||
int a= x+dx[i],b = y +dy[i];
|
||
if(a>=0 && a<matrix.size() &&b>=0 && b<matrix[a].size())
|
||
if(dfs(matrix,str,u+1,a,b))return true;
|
||
}
|
||
matrix[x][y] = t;
|
||
return false;
|
||
}
|
||
bool hasPath(vector<vector<char>>& matrix, string &str) {
|
||
for(int i = 0 ; i < matrix.size() ; i++)
|
||
{
|
||
for(int j = 0 ; j < matrix[i].size() ; j++)
|
||
{
|
||
if(dfs(matrix,str,0,i,j))
|
||
{
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
};
|
||
```
|
||
|
||
|
||
|
||
# 18.55. 连续子数组的最大和
|
||
|
||
```cpp
|
||
s表示收益
|
||
res表示最终结果
|
||
```
|
||
|
||

|
||
|
||
# 19.42. 栈的压入、弹出序列
|
||
|
||
```cpp
|
||
关键:不是所有的数都入栈,他才开始进行弹出操作.
|
||
完全可以实现这么一种情况:你还进去,人家就已经出来了
|
||
|
||
|
||
```
|
||
|
||
|
||
|
||
# 20.
|
||
|
||
# 21.
|
||
|
||
# 22.
|
||
|
||
# 23.
|
||
|